Numerical expansion-iterative method for solving second kind Volterra and Fredholm integral equations using block-pulse functions
نویسنده
چکیده
This paper presents a numerical expansion-iterative method for solving linear Volterra and Fredholm integral equations of the second kind. The method is based on vector forms of block-pulse functions and their operational matrix. By using this approach, solving the second kind integral equation reduces to solve a recurrence relation. The approximate solution is most easily produced iteratively via the recurrence relation. Therefore, computing the numerical solution does not need to directly solve any linear system of algebraic equations and to use any matrix inversion. Moreover, this approach does not use any projection method such as collocation, Galerkin, etc., for setting up the recurrence relation. To show convergence and stability of the method, some computable error bounds are obtained, and some test problems are provided to illustrate its accuracy and computational efficiency.
منابع مشابه
Numerical solution of Hammerstein Fredholm and Volterra integral equations of the second kind using block pulse functions and collocation method
In this work, we present a numerical method for solving nonlinear Fredholmand Volterra integral equations of the second kind which is based on the useof Block Pulse functions(BPfs) and collocation method. Numerical examplesshow eciency of the method.
متن کاملHYBRID FUNCTIONS APPROACH AND PIECEWISE CONSTANT FUNCTION BY COLLOCATION METHOD FOR THE NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS
In this work, we will compare two approximation method based on hybrid Legendre andBlock-Pulse functions and a computational method for solving nonlinear Fredholm-Volterraintegral equations of the second kind which is based on replacement of the unknown functionby truncated series of well known Block-Pulse functions (BPfs) expansion
متن کاملSolving Second Kind Volterra-Fredholm Integral Equations by Using Triangular Functions (TF) and Dynamical Systems
The method of triangular functions (TF) could be a generalization form of the functions of block-pulse (Bp). The solution of second kind integral equations by using the concept of TF would lead to a nonlinear equations system. In this article, the obtained nonlinear system has been solved as a dynamical system. The solution of the obtained nonlinear system by the dynamical system throug...
متن کاملITERATIVE METHOD FOR SOLVING TWO-DIMENSIONAL NONLINEAR FUZZY INTEGRAL EQUATIONS USING FUZZY BIVARIATE BLOCK-PULSE FUNCTIONS WITH ERROR ESTIMATION
In this paper, we propose an iterative procedure based on two dimensionalfuzzy block-pulse functions for solving nonlinear fuzzy Fredholm integralequations of the second kind. The error estimation and numerical stabilityof the proposed method are given in terms of supplementary Lipschitz condition.Finally, illustrative examples are included in order to demonstrate the accuracyand convergence of...
متن کاملNUMERICAL APPROACH TO SOLVE SINGULAR INTEGRAL EQUATIONS USING BPFS AND TAYLOR SERIES EXPANSION
In this paper, we give a numerical approach for approximating the solution of second kind Volterra integral equation with Logarithmic kernel using Block Pulse Functions (BPFs) and Taylor series expansion. Also, error analysis shows efficiency and applicability of the presented method. Finally, some numerical examples with exact solution are given.
متن کاملA Fast and Accurate Expansion-Iterative Method for Solving Second Kind Volterra Integral Equations
This article proposes a fast and accurate expansion-iterative method for solving second kind linear Volterra integral equations. The method is based on a special representation of vector forms of triangular functions (TFs) and their operational matrix of integration. By using this approach, solving the integral equation reduces to solve a recurrence relation. The approximate solution of integra...
متن کامل